Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120286, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354613

RESUMO

The threat of bioterrorism has spurred research on the decontamination and containment of different agents. Anthrax [causative agent Bacillus anthracis (Ba)] is a disease that can lead to severe infections within human and animals, particularly when inhaled. This research investigated the use of spore-contaminated simulated runoff events into stormwater control measures (SCMs), which are designed to retain and improve the quality of runoff and may have the potential to filter and contain the spores. In this study, the effectiveness of a bioretention cell (BRC) and high flow media filter (HFMF) in Huron, Ohio, were evaluated for removal of Bacillus globigii (Bg) spores (a harmless cognate of Ba). Three 4-8 mm simulated runoff events were created for each SCM using a fire hydrant and Bg spores were injected into the runoff upstream of the SCM inlets. The BRC significantly (p < 0.001) outperformed the HFMF in reducing Bg concentrations and loads, with an average load reduction of 1.9 log (∼99% reduction) compared to 0.4 (∼60% reduction), respectively. A probable critical design factor leading to these differences was the infiltration rate of the media and subsequent retention time within the filters, which was supported by similar disparities in suspended solids reductions. Differences in spore removal may also have been due to particle size distribution of the HFMF, which was more gravelly than the bioretention cell. At 3 and 6 months after the-simulated runoff tests, soil samples taken from both SCMs, yielding detectable Bg spores within the top 15 cm of media, with increased spore concentrations where ponding occurred for longer durations during the tests. This suggests that forebays and areas near inlets may be hotspots for spore cleanup in a real-world bioterrorism incident.


Assuntos
Bacillus anthracis , Bacillus , Animais , Humanos , Esporos Bacterianos , Bacillus subtilis
2.
Environ Sci Technol ; 46(11): 6288-96, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22545559

RESUMO

Applications for silver nanomaterials in consumer products are rapidly expanding, creating an urgent need for toxicological examination of the exposure potential and ecological effects of silver nanoparticles (AgNPs). The integration of genomic techniques into environmental toxicology has presented new avenues to develop exposure biomarkers and investigate the mode of toxicity of novel chemicals. In the present study we used a 15k oligonucleotide microarray for Daphnia magna, a freshwater crustacean and common indicator species for toxicity, to differentiate between particle specific and ionic silver toxicity and to develop exposure biomarkers for citrate-coated and PVP-coated AgNPs. Gene expression profiles revealed that AgNO(3) and AgNPs have distinct expression profiles suggesting different modes of toxicity. Major biological processes disrupted by the AgNPs include protein metabolism and signal transduction. In contrast, AgNO(3) caused a downregulation of developmental processes, particularly in sensory development. Metal responsive and DNA damage repair genes were induced by the PVP AgNPs, but not the other treatments. In addition, two specific biomarkers were developed for the environmental detection of PVP AgNPs; although further verification under different environmental conditions is needed.


Assuntos
Daphnia/efeitos dos fármacos , Daphnia/genética , Exposição Ambiental/análise , Nanopartículas Metálicas/toxicidade , Nitrato de Prata/toxicidade , Prata/toxicidade , Toxicogenética , Animais , Biomarcadores/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Íons , Reprodutibilidade dos Testes , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Testes de Toxicidade Aguda
3.
Environ Toxicol Chem ; 29(12): 2742-50, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20890913

RESUMO

Relatively little is known about the behavior and toxicity of nanoparticles in the environment. Objectives of work presented here include establishing the toxicity of a variety of silver nanoparticles (AgNPs) to Daphnia magna neonates, assessing the applicability of a commonly used bioassay for testing AgNPs, and determining the advantages and disadvantages of multiple characterization techniques for AgNPs in simple aquatic systems. Daphnia magna were exposed to a silver nitrate solution and AgNPs suspensions including commercially available AgNPs (uncoated and coated), and laboratory-synthesized AgNPs (coated with coffee or citrate). The nanoparticle suspensions were analyzed for silver concentration (microwave acid digestions), size (dynamic light scattering and electron microscopy), shape (electron microscopy), surface charge (zeta potentiometer), and chemical speciation (X-ray absorption spectroscopy, X-ray diffraction). Toxicities of filtered (100 nm) versus unfiltered suspensions were compared. Additionally, effects from addition of food were examined. Stock suspensions were prepared by adding AgNPs to moderately hard reconstituted water, which were then diluted and used straight or after filtration with 100-nm filters. All nanoparticle exposure suspensions, at every time interval, were digested via microwave digester and analyzed by inductively coupled argon plasma-optical emission spectroscopy or graphite furnace-atomic absorption spectroscopy. Dose-response curves were generated and median lethal concentration (LC50) values calculated. The LC50 values for the unfiltered particles were (in µg/L): 1.1 ± 0.1-AgNO(3) ; 1.0 ± 0.1-coffee coated; 1.1 ± 0.2-citrate coated; 16.7 ± 2.4 Sigma Aldrich Ag-nanoparticles (SA) uncoated; 31.5 ± 8.1 SA coated. LC50 values for the filtered particles were (in µg/L): 0.7 ± 0.1-AgNO(3) ; 1.4 ± 0.1-SA uncoated; 4.4 ± 1.4-SA coated. The LC50 resulting from the addition of food was 176.4 ± 25.5-SA coated. Recommendations presented in this study include AgNP handling methods, effects from sample preparation, and advantages/disadvantages of different nanoparticle characterization techniques.


Assuntos
Daphnia/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Animais , Daphnia/metabolismo , Relação Dose-Resposta a Droga , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Poaceae/química , Prata/química , Nitrato de Prata/química , Nitrato de Prata/toxicidade , Espectroscopia por Absorção de Raios X , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...